
A Multi-flash Stereo Camera for Photo-realistic Capture of Small Scenes

Fig. 1. We present an applied approach to the photo-realistic capture of small scenes using a multi-flash stereo camera and recent neural 3D scene
understanding pipelines. Users often encounter restrictions on the number of views they can capture for a small scene. This quantity may be insufficient
for conventional or modern view synthesis methods to function effectively. However, having scene depth proves beneficial in such cases. To that end, we
introduce a technique that can be easily incorporated to use current state-of-the-art 3D view interpolation with metric depth. Additionally we demonstrate a
device to capture multi-view color, depth and multi-illumination images and generate portable, photo-realistic 3D assets from a few instances of the captured
data. The reconstruction of this scene was generated with only 11 stereo pairs captured with a robot mounted multi-flash stereo camera rig.

Automating the synthesis of photo-realistic digital twins of small scenes
such as objects on a table is an active area of research with compelling use
cases in gaming, content creation, virtual reality and robotics. Due to the
configuration of the scene and capture system, it is often difficult to capture
diverse views for the synthesis – especially for robotics applications. Out
of the box, several of the modern neural 3D scene understanding pipelines
are incompatible with, or perform poorly with limited viewpoint diversity.
Images acquired at the same camera pose with varying illumination further
deteriorates the quality of the results. We demonstrate a multi-flash stereo
camera system for capturing geometry and approximate spatially varying
reflectance of small scenes. Using a binocular stereo camera, we acquire
an estimate of the metric shape of the object, while multiple flash lights
around the cameras accentuate the depth edges and capture the illumination
dependent appearance of the scene. A small number of these instances are
fused and refined using modified versions of recent neural 3D shape repre-
sentations to obtain a portable photo-realistic representation of the scene in
the form or a volumetric representation or a textured mesh. Through this
work, we provide an analysis of exporting assets from small scenes, and pro-
pose a ‘drop-in’ modification to three recent neural 3D scene understanding
pipelines to work with the data collected by our system. Additionally, we
open-source the design of our system, the capture pipeline, and a data set of
diverse small scenes captured with our device.

1 INTRODUCTION
Multi-view 3D reconstruction and view synthesis is a fundamental
problem in computer vision with a set of mature tools and solutions
for content creation [Boudoin 2023; LumaLabs 2023], large scale
scene mapping [3DZephyr 2022], augmented reality and cinematog-
raphy [AliceVision 2022; RealityCapture 2022]. Several hardware
solutions for digitizing objects exist, ranging from consumer level
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3D scanners (e.g. [Shining3D 2023]), and room scale metrology de-
vices ([Ens 2023; Pho 2023; Matterport 2023]) to high precision hand
held 3D scanners (e.g. [Art 2023]). However, with renewed excite-
ment around virtual reality, enthusiast level 3D photogrammetry,
especially for small or tabletop scenes, has been supercharged by
more capable cellphone cameras ([ZDNet 2023; Zhang et al. 2020]),
and toolboxes like NerfStudio[Tancik et al. 2023] and RealityCap-
ture. A subset of the new toolboxes and cutting edge solutions in
the literature are geared towards view synthesis where the focus is
rendering quality rather than accurate scene geometry, especially
when a very diverse set of training views are absent. This is due
to the “shape-radiance ambiguity”[Kutulakos and Seitz 1999]–by
effectively by decoupling the scene transmissivity estimation from
the radiance prediction, neural scene representations[Fridovich-Keil
et al. 2022; Mildenhall et al. 2021; Müller et al. 2022] are prone to
estimating accurate color but poor shape reconstructions. By only
reasoning about appearance as cumulative radiance weighted with
the scene’s transmissivity along the viewing direction, these meth-
ods can achieve very convincing view interpolation results, with the
quality of estimated scene geometry (a derivative of scene transmis-
sivity) improving with the diversity and number of training views.
Researchers ([Wang et al. 2021; Yariv et al. 2021]) have also described
methods to effectively decouple scene geometry and appearance
by using a geometric back-end, paving the way towards physically
based neural scene understanding [Brahimi et al. 2024; Cheng et al.
2023; Zhang et al. 2022]. The geometric back-end, often a neural
network approximating the signed distance field of the scene, is
jointly trained with a neural appearance model to represent the
scene. Geometric back-ends are a natural choice for research on
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including scene depth in the process of generating better scene
representations from fewer views – [Azinović et al. 2022; Yu et al.
2022b] notably use dense depth priors whereas [Deng et al. 2022;
Roessle et al. 2022] use true scene depth to supervise view synthesis.
Recognizing the effectiveness of scene depth in view-synthesis

especially with fewer views, our work takes an applied approach to
generate high fidelity portable 3D assets from bounded scenes from
captured instances with a custom built multi-flash camera. We com-
bine insights from classical computer vision systems – multi-flash
cameras ([Feris et al. 2005; Raskar et al. 2004]), appearance cluster-
ing ([Feris et al. 2004; Koppal and Narasimhan 2006; Liu et al. 2018])
with recent deep learning based stereo matchers ([Xu et al. 2022])
and neural scene understanding pipelines and propose a system to
capture multi-illumination images of a bounded scene and generate
textured 3D meshes and a volumetric view interpolator from the
captured data. In this work,

(1) we present a “drop-in” modification to three current state of
the art view synthesis pipelines with geometric back-ends
: VolSDF[Yariv et al. 2021], NeuralAngelo[Li et al. 2023],
and AdaptiveShells[Wang et al. 2023]), enabling them to
use metric depth, accelerating their convergence and view
synthesis, using only a handful of training views.

(2) Inspired by [Feris et al. 2005; Raskar et al. 2004], we design
a multi-flash stereo camera system to capture multi-view,
multi-illumination images of small scenes, and show how
information captured by the system may be used to jointly
refine appearance and geometry from the captures.

Additional results may be viewed at https://stereomfc.github.io

2 RELATED WORK
View synthesis and reconstruction of shapes frommultiple 3Dmea-
surements is an important problem in computer vision with highly
efficient and general solutions like volumetric fusion ([Curless and
Levoy 1996]), screened Poisson surface reconstruction ([Kazhdan
and Hoppe 2013]), patch based dense stereopsis ([Galliani et al.
2015]) and joint refinement of surface and appearance [Dai et al.
2017]. While these continue to serve as robust foundations, they fall
short in capturing view-dependent effects. Additionally, even with
arbitrary levels of discretization, they often result in the smoothing
of texture and surfaces due to data association relying on weighted
averages along the object surface.
Recent neural 3D scene understanding pipelines (e.g. [Li et al.

2023; Mildenhall et al. 2021; Wang et al. 2021; Yariv et al. 2021]) have
avoided this by adopting a continuous implicit volumetric repre-
sentation to serve as the geometric and appearance back-end. To-
gether with continuous models, reasoning about appearance along
the direction of the rays and high frequency preserving embed-
dings[Tancik et al. 2020], these pipelines serve as highly capable
view interpolators by reliably preserving view dependent appear-
ance and minute geometric details. Prior work has improved upon
this by including additional geometric priors in the form of monoc-
ular depth supervision ([Yu et al. 2022b]), sparse depth supervision
from structure-from-motion toolboxes ([Sun et al. 2022]), dense
depth maps ([Azinović et al. 2022]), patch based multi-view con-
sistency [Fu et al. 2022], and, multi-view photometric consistency

under assumed surface reflectance functions ([Guizilini et al. 2023]).
Our work builds on the insights from using dense depth supervision
to improve scene understanding with only a few training views
available.

Novel hardware is often used for collecting supervision signals
in addition to color images to aid 3D scene understanding, espe-
cially when operating with a small number of available views. [Attal
et al. 2021] demonstrate a method to incorporate a time-of-flight
sensor.[Shandilya et al. 2023] demonstrate a method to extract geo-
metric and radiometric cues from scenes captured with a commercial
RGBD sensor ([Keselman et al. 2017]) and improve view synthesis
with as few as ten training views. Event based sensors have also
been used to understand poorly lit scenes with fast moving cam-
eras ([Klenk et al. 2023; Low and Lee 2023]). Researchers have also
combined illumination sources with cameras to capture photomet-
ric and geometric cues for dense 3D reconstruction of scenes with
assumed reflectances ([Chaudhury et al. 2024; Gotardo et al. 2015]),
and capturing geometry and reflectance of objects by refining multi-
view color, depth and multi-illumination images ([Cheng et al. 2023;
Schmitt et al. 2023, 2020]). Our work also pairs illumination sources
with stereo cameras to capture multiple supervision signals from
the scene.

Portability of the 3D representations is also an important aspect
and research on this area has taken two distinct directions in the
pursuit of a common goal – high fidelity rendering of the scene
delivered at interactive rates on consumer devices. Volumetric rep-
resentations([Hedman et al. 2021; Reiser et al. 2021; Yu et al. 2021])
need a custom back-end hosted through a web server and recent
iterations ([Duckworth et al. 2023; Reiser et al. 2023; Wang et al.
2023]) achieve upwards of 120FPS at full HD resolution on consumer
hardware. On the other hand, representations based on geometric
primitives e.g. Gaussians[Kerbl et al. 2023] and triangular meshes
([Chen et al. 2023; Cheng et al. 2023; Yariv et al. 2023]) exploit the
simplicity of the primitives for rendering content. We chose triangu-
lar meshes for rendering and exporting our 3D scene models given
the mature set of accelerators available ([Parker et al. 2010; Woop
et al. 2013]). For view interpolation, we use a volumetric rendering
pipeline inspired by [Wang et al. 2023].

3 METHODS
We synthesize novel views of a small scene with a small set of views.
To do that, our approach decouples appearance and geometry during
capture, by using metric depth from stereo as an estimate of the
geometry and the color image as the source of appearance models.
We describe our method of incorporating dense metric depth in
Section 3.1. We discuss the effects of jointly optimizing shape and
appearance of a scene in Section 3.2 and identify a few ambiguous
cases that can be resolved with additional supervision signals. We
briefly describe our system to capture the necessary measurements
of the scene in Section 3.3 and finally in Section 3.4, we describe a
“drop-in” modification to current state of the art to incorporate the
data collected by our system.

https://stereomfc.github.io
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Fig. 2. A snapshot of the data collected by our system. Figure 2a shows the color image captured by the right camera. We capture a high dynamic range
image [Mertens et al. 2007] and display it after tonemapping [Reinhard et al. 2023]. Figure 2b shows the scene depth captured by matching the left and the
right stereo pairs – we use GMFlow[Xu et al. 2022] to calculate the disparities, the inset scale is in mm. Figure 2c displays the likelihood of each pixel being on
a depth edge on the object. Figure 2d shows the object surface normals calculated as a spatial gradient scene depth. We note that unlike conventional stereo
matching ([Hirschmuller 2005; Zabih and Woodfill 1994]), [Xu et al. 2022] is returns locally smooth surfaces and ignores local texture variations but is also
much less noisy. The inset shows the surface normals on the textured aluminum plate calculated as gradients of depth from conventional stereo matching.
Finally, Fig. 2e identifies the pixels with the largest appearance variation due to moving lights. The asymmetries of the textured aluminum plate in Fig. 2e is
due to multiple bounce light paths.

3.1 Incorporating dense metric depth
Our scene representation consists of two neural networks – an in-
trinsic network N(𝜃 ) and an appearance network A(𝜙) which are
jointly optimized to capture the shape and appearance of the object.
Like prior work, we choose to represent the geometry of the scene
with a signed distance field approximated with a neural network.
Consequently, the first embedding channel of N is optimized to
return a continuous value corresponding to the signed distance of a
point from its nearest surface. We denote the function approximated
by the first embedding channel of N(𝜃 ) as S(𝜃 ) : R3 → R. The
surface of the object, therefore, is learned as the zero-level set of
S – i.e. for all surface points x𝑠 ∈ R3 | S(x𝑠 |𝜃 ) = 0. Prior work
has jointly learnt S,N ,A with only multi-view images, in contrast,
we have access to estimates of true surface depth along any ray
connecting x𝑠 to camera poses T𝑖 |𝑖 = 1, ..., 𝑁 through intrinsics C𝐿

and C𝑅 .
While the depth estimates can be directly used to optimize ap-

pearance and render surfaces, as recommended by [Dai et al. 2017;
Oechsle et al. 2021; Zollhöfer et al. 2015], to avoid some pathological
local minima discussed later, we elect to learn a continuous and
locally smooth function that approximates the signed distance func-
tion of the surface x𝑠 . To do this, we follow [Gropp et al. 2020] and
consider a loss function of the form

ℓ𝐷 (𝜃 ) = ℓx𝑠 + 𝜆E( | |∇xS(x𝑛𝑒𝑖 , 𝜃 ) − 1| |)2 (1)

where, ℓx𝑠 = 1
𝑁
Σ∀x [S(x, 𝜃 ) + 1 − ⟨∇xS(x, 𝜃 ), n𝑥 ⟩], through the

two components, the loss encourages the function S(x, 𝜃 ) to vanish
at the observed surface points and the gradients of the surface to
align at the measured surface normals. The second component in
Eq. (1) is the Eikonal term ([Crandall and Lions 1983]) which en-
courages the gradients of S to have a unit 𝐿2 norm everywhere. The
individual terms of Eq. (1) are averaged across all samples in a batch
corresponding to 𝑁 rays projected from a known camera.
The Eikonal constraint applies to the neighborhood points x𝑛𝑒𝑖

of each point in x𝑠 . [Gropp et al. 2020] identifies candidate x𝑛𝑒𝑖

through a nearest neighbor search, where as [Yariv et al. 2021] iden-
tifies x𝑛𝑒𝑖 through random perturbations of the estimated surface
point along the projected ray. As we have access to depth maps, we
identify the variance of the neighborhood of a point on the surface
through a sliding window maximum filter. Finally, we adopt the
scene density network and the training methodology from [Li et al.
2023] to optimize S(𝜃 ).

Our method is fundamentally different from prior work. It enables
us to recover a geometric representation of the scene (as opposed
to [Deng et al. 2022; Roessle et al. 2022]), is faster and more sample
efficient than [Azinović et al. 2022], and more robust to local and
global measurement errors than [Yu et al. 2022b]. We explain the
details in appendix A.

Table 1. We investigate a pathological case of learning shape and
appearance jointly. The numbers (lower is better) denote the RMS devia-
tion of the reconstructed surface from a plane and have been normalized
to a single metric scale. We note that surface based methods (AdaShell†,
UniSurf†) perform worse than volumetric methods (VolSDF†, NeUS†), and
except UniSurf†, all improve the quality of the surface measured with stereo.
More details in Section 3.2, qualitative results in Fig. 3. Description of the
modified methods ( ·†) in Section 3.4.

Position stereo VolSDF† NeUS† AdaShell† UniSurf†
horizontal (Fig. 3a) 622 474 277 542 1321
vertical (Fig. 3b) 682 387 368 634 1602

3.2 Joint refinement of appearance and shape
Following recent work, we jointly optimize an implicit representa-
tion consisting of two neural networks –N(𝜃 ) representing the im-
plicit properties of the scene andA(𝜙) representing the appearance
of the scene using differentiable volumetric rendering. To render
the color C of a single pixel of the scene at a target view with a
camera centered at o and an outgoing ray direction d, we calculate
the ray corresponding to the pixel r = o + 𝑡d, and sample a set
of points 𝑡𝑖 along the ray. The networks N(𝜃 ) and A(𝜙) are then
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(a) (b)

Fig. 3. We demonstrate a pathological case of jointly refining ap-
pearance and geometry. The left insets of Figs. 3a and 3b are the scene
geometries recovered in the worst cases, the right insets display the better
meshes recovered by restricting the capacity of the model during training.
Additionally, along the right insets, we provide an image used for train-
ing and the edge map used for sampling – we recommend zooming in or
referring the project website for high resolution versions of this figure. Cor-
responding quantitative results in Table 1.

evaluated at all the x𝑖 corresponding to 𝑡𝑖 and the per point color
c𝑖 . The transmissivity 𝜏𝑖 is obtained and composited together using
the quadrature approximation from [Max 1995] as:

C =
∑︁
𝑖

exp ©­«−
∑︁
j<i

𝜏j𝛿j
ª®¬ (1 − exp(−𝜏j𝛿j))ci, 𝛿i = ti − ti−1 (2)

The neural implicit representations can then be trained jointly using
a loss on the estimated and ground truth color C𝑔𝑡

ℓ𝐶 = E
[
| |C − C𝑔𝑡 | |2

]
(3)

We follow recent work and obtain the optical density (related to
bulk transmissivity 𝜏𝑖 ) of the scene by transforming the value of the
signed distance function S(x𝑖 , 𝜃 ) and jointly minimize the losses ℓ𝐷
and ℓ𝐶 in Eqs. (1) and (3) using stochastic gradient descent [Kingma
and Ba 2014]. As the gradients of the loss functions ℓ𝐶 and ℓ𝐷 prop-
agate through A and N (and S as it is part of N ) the appearance
and geometry are learned together. Our 3D reconstruction pipeline
can be considered adjacent to prior works ([Li et al. 2023; Sun et al.
2022; Wang et al. 2021; Yariv et al. 2021]). However, unlike those, we
bias the optimization of A andN with metric depth captured using
a stereo rig by incorporating ℓ𝐷 (Eq. (1) and Section 3.1) in the opti-
mization process. Although prior work shows the benefits of jointly
refining shape and appearance, some pathological cases may arise
when the scene has a large variation in appearance corresponding
to a minimal variation in geometry. We investigate this effect by
considering an extreme case – a checkerboard printed on matte
paper where there is no geometric variation (all the texture is on a
plane) corresponding to a maximum variation in appearance (white
on black). We tested five methods to capture the appearance and
geometry of the surface: color aligned depth maps through stereo
and four modified versions of prior work. The qualitative results
are presented in Fig. 3 and the quantitative results are presented in
Table 1. We describe the modifications in Section 3.4. Through this
experiment we learnt that the models do not have the inherent ca-
pacity to disambiguate between texture and geometric edges (depth
discontinuities). Given enough iterations and capacity, the models
will continue to jointly update geometry N and appearance A to
minimize a perceptual loss (e.g. 𝐿1 or MSE loss in RGB space), often

(a) (b)

Fig. 4. We use geometric edge guided sampling to train our model to
disambiguate between depth and texture edges. Figure 4a shows two objects
with geometric edges and texture edges, the top inset is the color image
captures and the bottom inset shows each pixel identified with its likelihood
of being a depth edge. To demonstrate the effect of our sampling strategy
(Eq. (4)) we look at two rows of pixels 1 and 2 in Fig. 4a. Figure 4b shows
the likelihood 𝑃 (𝑝𝑖 ∈ E) in orange, 𝑃 (𝑝𝑖 ∉ E) in blue and 𝑃 (𝑝𝑖 |𝛼 = 0.5)
in green. Details in Section 3.2.

resulting in pathological cases (left insets in Fig. 3). However, by re-
stricting the modelling capacity ofN we can bypass this artifact and
force the gradient updates to focus onA to minimize the perceptual
loss. [Li et al. 2023] recognize this and provide an excellent set of
hyperparameters and training curricula for well known datasets
([Jensen et al. 2014; Knapitsch et al. 2017]) based on sophisticated
heuristics. As our hardware identifies areas with geometric edges,
we opt to preferentially sample image patches with low variation on
geometric features when the model capacity is lower (low number of
hash encodings active), and focus on image patches with geometric
edges when the model capacity has increased. Figure 6 pictorially
represents our training curriculum, Fig. 4 describes our sampling
procedure and Eq. (4) is used to draw pixel samples – the probability
of drawing pixel 𝑝𝑖 is calculated as a linear blend of the likelihood
that it belongs to the set of edge pixels E and 𝛼 is a scalar (𝛼 ∈ [0, 1])
proportional to the progress of the training.

𝑃 (𝑝𝑖 |𝛼) = (1 − 𝛼)𝑃 (𝑝𝑖 ∈ E) + 𝛼𝑃 (𝑝𝑖 ∉ E) (4)

To preserve the geometric nature of the edges, we use Euclidean
distance transform ([Felzenszwalb and Huttenlocher 2012]) to calcu-
late a smooth neighborhood around E identified by our multi-flash
camera before applying Eq. (4).

3.3 A multi-flash stereo camera
So far, we have identified scene depth and depth edges as valuable
signals, in addition to images. To capture all the supervision signals,
we designed and fabricated a multi-flash stereo camera. We image
the scene using two machine vision cameras with fixed focal length
lenses. The cameras (C𝐿 and C𝑅 ) are synchronized with each other
and also to each of the twelve flash lights (𝐿1:12) in a ring around
them.

It is known from the literature (see e.g. [Liu et al. 2012; Raskar et al.
2004]) that under directional illumination located in the imaging
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Fig. 5. Schematic of our prototype system used to capture the data in
Fig. 2. Details of system components and data capture in Appendix B

plane, intensity variations due to depth edges are more prominent
than intensity variations due to texture edges – we use this insight
to identify the pixel locations of depth edges in the images. We
use insights from [Chandraker et al. 2012; Koppal and Narasimhan
2006; Liu et al. 2018]) to identify areas with specular reflectances.
We defer a detailed discussion of the choice of components and
practical considerations in designing the multi-flash camera system
to appendix B, Fig. 5 presents a schematic of our capture device and
Fig. 2 presents a snapshot of the data collected by our device.

3.4 Representations
We consider four modified versions of the current state of the art
methods for joint 3D shape and appearance learning. As noted by
[Yu et al. 2022a], these methods mainly differ in how the ray samples
are generated to calculate Eq. (2). The different methods of drawing
samples along the rays can be distinguished by their degree of bias
towards the current estimate of location of the surface. Surprisingly,
all ’methods with a geometric back-end can be adopted to use met-
ric depth by substituting the part of the pipelines estimating the
geometry with the optimization of Eq. (1). We study the following
four variations:
Volumetric representations ([Wang et al. 2021; Yariv et al.

2021]) sample from heavier tailed distributions to ensure enough
variance in samples so that the minimization of Eq. (2) can escape
low quality local minima at the cost of training and inference time.
We present two modified versions of the current state of the art:
NeUS†([Wang et al. 2021]) and VolSDF†([Yariv et al. 2021]) to ex-
plore the incorporation of dense metric depth.

Surface based representations on the other hand draw biased
samples with lesser variance and demonstrate quicker convergence
and rendering times. We study a modification of [Oechsle et al.
2021]: UniSurf†, where the bias can be controlled using a hyper-
parameter. Alternatively, [Wang et al. 2023] recover an adaptive
parameter that dictates the sampling bias to accelerate inference. As
we measure object surface independently from appearance (through
stereo depth), we can apply the same insights to accelerate training
and inference. We call this modification AdaShell† after the original
work “Adaptive Shells”.

Figure 6 graphically describes the general procedure we follow to
capture scene representations, and we present the details of the four
methods in appendix C. Additionally, with varying illumination and
pre-optimized scene geometry, we can estimate material properties

of the objects. We present our method for approximating spatially
varying BRDF in appendix D.

4 RESULTS

4.1 Dataset
Although a data set is not the primary contribution of our research,
our device captures some salient aspects of the scene that are not
present in several established datasets. We identify these aspects
in Table 2. In the rows labeled “specularity” and “depth edges” we
note if the dataset has explicit labels for the specular nature of the
pixel or a presence of a depth edge at the location respectively.
Under “illum. model” we note if an explicit illumination model is
present per scene – we do not capture an environment illumination
model, instead provide light poses. PaNDoRa does not have explicit
specularity labels but polarization measurements at pixels may be
used to derive high quality specularity labels, which are better
than what our system natively captures. We differentiate between
“OLAT” (one light at a time) and “flash” by the location of the source
of illumination. Similar to WildLight [Cheng et al. 2023], our flashes
are parallel to the imaging plane, located close (∼0.1f) to the camera,
as opposed to ReNE and OpenIllumination.

For each camera pose, we capture an HDR stereo pair, two depth
maps, and two surface normals (as gradient of depth maps) aligned
to the 𝐶𝐿 and 𝐶𝑅 , two depth masks aligned to 𝐶𝐿 and 𝐶𝑅 , two
depth edge labels for the left and right frames, and two sets of 12
flash images using 𝐿1:12 for 𝐶1 and 𝐶2. Several instances of these
image sets are collected and the colored depth maps are registered
in the 3D space in two staged – first coarsely using FGR [Zhou
et al. 2016] and then refined by optimizing a pose graph[Choi et al.
2015]. At the end of this global registration and odometry step,
we retain a reprojection error of about 5 - 10 pixels, which, if not
addressed, will cause baked assets with smudged color textures. To
address it, we independently align the images using image-feature
based alignment techniques common in multi-view stereo ([Sarlin
et al. 2019; Schönberger et al. 2016]), so that a sub 1 pixel mean
squared reprojection error is attained. The cameras aligned in the
image-space are then robustly transformed to the world space poses
using RANSAC[Fischler and Bolles 1981] with Umeyama-Kabsch’s
algorithm[Umeyama 1991]. Finally, we mask out the specular parts
of the aligned images and use ColorICP [Park et al. 2017] to refine
the poses to remove any small offset in the camera poses introduced
by the robust alignment step. A subset of the data collected can be
viewed on the project website.

4.2 Experiments
In this section we describe our experiments on the data collected
by our system (Section 4.1) with the scene understanding pipelines
we proposed in Section 3.4.

4.2.1 Accuracy. To measure the accuracy of our technique of incor-
porating metric depth, we reconstruct synthetic scenes with ground
truth depth – in particular, we use the scenes curated by [Azinović
et al. 2022]. We use 12-15 RGBD tuples to reconstruct the scenes
and train for an average of 30k gradient steps (∼1500 epochs) in
about 75 minutes, in contrast to 300+ RGBD tuples and 9+ hours of
training for [Azinović et al. 2022] on comparable hardware. Notably,
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Fig. 6. Our approach to recovering 3D assets from captured data. In the first part, for NeUS†([Wang et al. 2021]) and VolSDF†([Yariv et al. 2021]) we
jointly optimize geometry and appearance by minimizing Eqs. (1) and (3). For AdaShell†, we first optimize Eq. (1) for a fixed number of gradient steps before
the joint optimization. At this stage the geometry is optimized and appearance is recovered as radiance. Following this, we use multi-illumination images with
a truncated BRDF parametrization to refine the appearance model, given the geometry to learn the reflectance parameters. More details in appendix D.

Table 2. We identify some differences between our dataset and a few
established datasets: BMVS[Yao et al. 2020], DTU[Jensen et al. 2014],
DiLiGenT[Shi et al. 2016], DiLiGenT-MV[Shi et al. 2016] (both abbreviated
as DGT*), PaNDoRa[Dave et al. 2022] and Open-Illumination[Liu et al.
2023a].

Property BMVS DTU ReNE DGT* PaNDoRa OpenIllum. Ours
depth ✓ ✓ × ✓ × × ✓
OLAT/ Flash OLAT × OLAT OLAT × OLAT Flash
polarization × × × × ✓ ✓ ×
specularity × × × × ✓ × ✓
depth edges × × × × × × ✓
HDR ✓ × × ✓ × ✓ ✓
illum. model ✓ × × ✓ ✓ ✓ ×

Table 3. Accuracy of reconstruction. We compare the accuracy of re-
constructing the scene using VolSDF† and NeUS† with [Azinović et al.
2022] and [Dai et al. 2017]. We compare normalized chamfer distances
(lower is better) across four synthetic scenes from [Azinović et al. 2022].
Scenes from BlendSwap.

Scene NeuralRGBD BundleFusion VolSDF† NeUS†
greenroom 0.013 0.024 0.012 0.016
staircase 0.045 0.091 0.020 0.009
kitchen I 0.252 0.234 0.047 0.036
kitchen II 0.032 0.089 0.060 0.032

[Azinović et al. 2022] also optimizes for noise in poses and reports
metrics with ground truth poses in addition to optimized poses. We
echo the best metric among these two. [Dai et al. 2017] registers the
images themselves and for our experiments, we estimate the camera
poses using the method described in Section 4.1. We present the
quantitative results in Table 3. We replicate or out-perform the base-
lines by using a fraction of the training data and gradient steps, and
among the methods discussed in Section 3.4, NeUS† and VolSDF†
demonstrate similar performance, but, VolSDF† converges about
1.25x faster than NeUS†.

4.2.2 Training performance. To identify the comparative perfor-
mance of the methods proposed in Section 3.4, we test them under
three scenes. Scene a (Fig. 7(a)) looks at a couple of specular objects
with large variation in view dependent appearance. Additionally,
there are large local errors in the captured depth maps due the
specularities in the scene. We capture six stereo pairs and train
on 11 images and test on one image. Scene b (Fig. 7(b)) features a

Table 4. Speed of convergence.We compare the number of gradient steps
(in thousands, lower is faster) to reach a target test-time accuracy of re-
constructing the scene (PSNR in dB). We report the numbers for scenes in
Fig. 7(a,b,c) for each of the methods tested. As a pre-processing step for
AdaShell† and Unisurf† we optimize Eq. (1) for 10k steps. We use exponen-
tially moving average (EMA) with a smoothing factor of 0.99 to report the
numbers. All of the trends were monotonically increasing till the cutoff at
100k steps. Cases of divergences of Unisurf† marked with − − −−.

PSNR VolSDF† NeUS† AdaShell† Unisurf†
20 6.42 6.60 9.43 16.1 12.5 23.4 3.6 1.52 4.85 2.5 1.81 – –
25 15.0 20.4 24.7 41.4 74.8 72.2 16.7 7.24 54.8 – – – – – –
27.5+ 21.3 33.1 40.0 70.5 100+ 100+ 25.4 23.2 94.6 – – – – – –

rough metallic object in a very shallow depth of field captured by
a 16mm lens (450 mm focal length). We capture four stereo pairs,
train on seven images and test on on the remaining image. Scene c
(Fig. 7) features a fairly complicated geometry and is captured with
12 stereo pairs, we train on 22 images and test on two. Quantitative
results of our experiments are in Table 4. We observe that VolSDF†
converges the fastest, NeUS† recovers the highest quality geometry.
If the primary consideration is not geometry (e.g., in the context
of view interpolation alone), we observed that AdaShell performs
best for scenes characterized by simpler geometries. We did not find
ideal parameters for Unisurf† to succeed on any of these sequences.

4.2.3 View interpolation. AdaShell† uses the pre-computed scene
geometry to learn a scene representation and combines the best of
both surface rendering and volumetric rendering towards our goal
of interpolating views. Starting with a pre-trained geometric back-
end obtained by minimizing Eq. (1), we draw heavily biased samples
using the pre-computed surface to learn appearance as radiance. Due
to the surface bias, the sampling process is efficient and needs few
samples (as low as 20 samples per ray) to capture the appearance.
Fig. 10 shows AdaShell† capturing the finer details of the scene.
However, our experiments (Table 1) indicate that the optimization
deteriorates the quality of surface by a small but noticeable amount,
by producing some high frequency artifacts.

4.2.4 Using noisy depth. To investigate the effects noise in the
depth maps, we re-calculated the depths of some of the scenes
using conventional stereo. We used semi-global matching stereo
([Hirschmuller 2005]) with a dense census cost ([Zabih and Woodfill

https://blendswap.com
https://blendswap.com/blend/8381
https://blendswap.com/blend/14449
https://blendswap.com/blend/11801
https://blendswap.com/blend/5156
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1994]) and sub-pixel refinement on tone mapped HDR images to
calculate the surface depth, and surface normals were calculated
using the spatial gradients of the depthmaps. These noisy depths and
normals substituted the depths and normals calculated using learnt
stereo in our original pipeline and the scenes were reconstructed
with the noisy data. To isolate the performance of our pipelines, we
did not filter the depth obtained from stereo. From the top of Table 5,
we observe that NeUS† strictly improves the quality of the surface
reconstructed from just noisy stereo (row 1 and 2 versus row 3).
Nevertheless, from the bottom of Table 5 we note that, if the end goal
is just view synthesis, AdaShell† performs equally well with smooth
or noisy depth, indicating that photorealistic view synthesis is still
possible with noisy depth data. However, unprocessed conventional
stereo often introduces large local errors (see e.g. surface patterns
on Fig. 8(b,f)) which our pipelines could not correct using a handful
of views.

4.2.5 Effect of supervision Signals. We found the role of high quality
depth from stereo as a supervision signal to be disproportionately
influential in the success of our pipeline. It frequently took prece-
dence over the subtle advantages of edge sampling (Section 3.2),
particularly in the case of simpler geometries. Nevertheless, in the
presence of noisy depth, the quality of the reconstructed surface
was enhanced through edge-based sampling Section 3.2 and Eq. (4)).
Our hierarchical sampling strategy allocated samples away from
depth edges, where the noise was more prevalent, thus less gradient
steps were spent modelling areas with higher noise. Table 5 presents
the quantitative details of the experiment.

We discuss our experiment on recovering reflectance parameters
and exporting assets in appendix D.

5 CONCLUSIONS

5.1 Discussions
Although we achieve state of the art results in view-synthesis, our
approach struggles to represent transparent objects and accurately
capture the geometry of reflective surfaces. [Liu et al. 2023b] address
the problem with reflective objects by modelling background reflec-
tions and is based on the architecture proposed by [Wang et al. 2021].
As NeUS† adapts the same back-end to use metric depth and can in-
corporate noisy depth estimates. Starting at Section 4.2.4, extending

Table 5. Effect of noisy depth and depth edges. Top: The surface re-
construction quality (Hausdorff distance, lower is better) with conventional
(noisy) stereo compared with surface recovered by NeUS† on learnt stereo.
Qualitative comparison in Fig. 8(b,d,f). Bottom: gradient steps (in 1000s
lower is faster) required to surpass a test time accuracy of 27.5dB with
AdaShell†. Like Table 4, we use EMA with a smoothing factor of 0.99 and
the trends were monotonically increasing till (and beyond) the reported
steps. We specify the count of views utilized in [ ] braces.

condition Fig. 8(a,b)[5] Fig. 8(c,d)[7] Fig. 8(e,f)[5]
edge sampling 491 403 225
no edge sampling 593 419 251
noisy stereo 600 523 369

27.5+ PSNR with noise 7.93 20.2 5.12
27.5+ PSNR without noise 7.85 23.2 2.71

our work to accommodate shiny objects should be straightforward.
Our pipelines require metric depth to be functional, which ties

it with our capture device. Future work will address enrollment of
monocular depth priors, comparison between our method and [Yu
et al. 2022b] in appendix A may be a good starting point in that
direction. Incorporation of metric depth also introduces a strong
bias, often limiting super resolution of geometry typically achieved
in neural 3D scene representation (see e.g. [Li et al. 2023]). Limiting
the extent of use of metric depth in our pipelines is expected to
address this issue and is future work.

At the moment, calculating good exposure values during capture
and color grading across the tonemapped HDR images and flash-lit
images (e.g. bottom left insets in Fig. 1) is best done manually, per
scene. If done improperly, this can significantly deteriorate the re-
construction quality. Modern smartphone cameras ([ZDNet 2023;
Zhang et al. 2020]) address this issue through sophisticated software,
while also capturing metric depth and can be used to collect data
for our pipelines.

Finally, modern grid based representations (see e.g. [Duckworth
et al. 2023; Reiser et al. 2023]) produce very compelling view inter-
polation results at a fraction of the computational cost of a state
of the art volumetric renderer (e.g. [Müller et al. 2022; Wang et al.
2023]). However, they need to be “distilled” from a pre-trained vol-
umetric view interpolator. Future work can investigate the use of
depth priors to train a grid based representation directly from color
and depth images.

5.2 Conclusions
We presented a solution for automated capture of portable tabletop
assets by proposing (1) a novel multi-flash camera system and (2)
an implicit representation architecture that takes advantage of the
unique data available to our multi-flash camera system. Compared
to state-of-the-art implicit 3D representations, our system generates
assets of higher quality both in terms of visual fidelity and shape
reconstruction, while requiring lesser compute and data. We use the
data collected with our system and generate photo-realistic portable
representations of the scene in the form of volumetric renderings
or a mesh with color and material properties as texture.
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Fig. 7. Relative performance of all the methods. Details in Section 4.2.2, quantitative results in Table 4. Each method was allocated a budget of 100,000
gradient steps or fewer, and the enhancement in reconstruction exhibited a monotonically increasing trend until (and beyond) the cutoff.

Fig. 8. Using noisy data for reconstruction. Descriptions in Sections 3.4 and 4.2.3. Top row denotes the surface normals and surfaces reconstructed using
learnt stereo ([Xu et al. 2022], and bottom row denotes the same using conventional stereo matching. We present normals in figures a,c and, e instead of the
surface depths to highlight the noise in the data.
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Fig. 9. AdaShell† and Adaptive Shells [Wang et al. 2023] recover similar sampling volumes. Figures a,d are the geometries recovered after optimization
of Eq. (1) and is the starting point of AdaShell†. Figures b, e display the sampling volumes around the starting geometry after AdaShell† has converged. Details
in appendix C.

Fig. 10. Sampling reconstructions with AdaShell†. Details in Section 4.2.3. Figures (a,d) are ground truth test images, (b,e) are reconstructed views, and
(c,f) are cropped and zoomed in sections. Starting geometries in Fig. 9(a,d). Both the scenes were trained on 9 and tested on 1 view for 30K gradient steps. For
the diffuse scenes above, AdaShell† recovered thin ‘shells’ around the estimated geometry, accelerating convergence and rendering.

(a) Limited parameterization (b) Full Disney BDRF parametrization

Fig. 11. Optimizing for the full Disney BRDF is difficult. Figure 11a shows our results with only specularity, roughness and metallic BRDF parameters.
Figure 11b depicts identical results utilizing the complete range of Disney BRDF parameters as outlined in [Cheng et al. 2023]. Note the excessive glossy
appearance of Fig. 11b due to the dominance of the clearcoat and clearcoat-gloss parameters. Details in appendix D, meshes rendered with [Sketchfab 2024].

(a) VolSDF† (b) AdaShell† (c) NeUS†

Fig. 12. All the pipelines can be used to extract the “base-color” of the scene. We bake out the radiance as texture of the meshes at the end of the experiment
in Table 4 for the scene in Fig. 1. Details in appendix D. The textured meshes are rendered with MeshLab[Cignoni et al. 2008].
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Supplementary Material: A Multi-flash Stereo Camera for Photo-realistic Capture of
Small Scenes.
This document inherits the figure, table, equation numbers and

references from the main document. Additional results may be
viewed at https://stereomfc.github.io

A DIFFERENCE BETWEEN OUR AND PRIOR WORK ON
NEURAL SCENE UNDERSTANDING WITH DEPTH

IGR[Gropp et al. 2020]were among the first to fit a neural surface
to point samples of the surface. Our pipeline is largely inspired by
them. However, we have two man differences – we use a smaller net-
work, and periodically activated multi-resolution hash encodings as
recommended by [Li et al. 2023] instead of a fully connected cascade
of layers with skip connections. Additionally, as we have access to
depth maps, we identify the variance of the neighborhood of a point
on the surface through a sliding window maximum filter. We use
this variance in a normal distribution to draw samples for x𝑛𝑒𝑖 at
each ray. Our strategy assumes that image-space pixel neighbors
are also world space neighbors, which is incorrect along the depth
edges, however, as the Eikonal equation should be generally valid
in R3 for S, the incorrect samples do not cause errors and only
contribute as minor inefficiencies in the pipeline. A more physically
based alternative, following [Gropp et al. 2020], would be executing
nearest neighbor queries at each surface point along the rays to
estimate the variance for sampling. With about 80k rays per batch,
∼ 200K points in (x𝑠 ), and about 40k gradient steps executed till
convergence, and a smaller network, our approach was more than
two orders of magnitude faster than [Gropp et al. 2020], with no
measurable decrease in accuracy of approximating the zero-level
set of the surface.

NeuralRGBD[Azinović et al. 2022] is the closest prior work to
us based on data needed for the pipeline and its outcome – the scene
is reconstructed using color and aligned dense metric depth maps.
The authors aggregate the depth maps as signed distance fields and
use the signed distance field to calculate weights for cumulative
radiance along samples on a ray (Eq. (2) in text). The weights are
calculated with

𝑤𝑖 = 𝜎

(
𝐷𝑖

𝑡𝑟

)
× 𝜎

(
−𝐷𝑖

𝑡𝑟

)
(5)

where the 𝐷𝑖 are the distance to the surface point along a ray, and
the truncation 𝑡𝑟 denotes how fast the weights fall off away from the
surface. Equation (5) yields surface biased weights and this is jointly
trained with the color. Notably, the depth map aggregation does not
yield a learned sign distance field (no Eikonal regularizer in the loss).
The authors also include a ‘free-space’ preserving loss to remove
“floaters”. As implemented, the pipeline needs the truncation factor
to be selected per-scene. As the depth maps are implicitly averaged
by a neural network, it is implicitly smoothed and therefore the
pipeline is robust to local noise in the depth map.
MonoSDF[Yu et al. 2022b] is mathematically the closest prior

method to our work and it uses dense scene depths and normals
obtained by a monocular depth and normal prediction network
(OmniData[Eftekhar et al. 2021]). MonoSDF defines the ray length

weighted with the scene density as the scene depth d𝑝𝑟𝑒𝑑 and mini-
mizes

ℓ𝐷 =
∑︁
𝑟

| |wd𝑚𝑜𝑛𝑜 + q − d𝑝𝑟𝑒𝑑 | |22 (6)

where {w, q} are scale and shift parameters, because the monocular
depth d𝑚𝑜𝑛𝑜 , in addition to gauge freedom (w) also has an affine
degree of freedom (q). The scale and shift can be solved using least
squares to align d𝑚𝑜𝑛𝑜 and d𝑝𝑟𝑒𝑑 . The scene normals are also calcu-
lated as scene density weighted spatial gradients of S. Through a
scale and shift invariant loss, MonoSDF calculates one set of (w, d)
for all the rays in the batch and in the earlier stages of the training,
this loss helps the scene geometry converge. The underlying as-
sumption being, there is an unique tuple {w, q} per training image
that aligns d𝑚𝑜𝑛𝑜 to the actual scene depth captured by the intrinsic
network N .

Our experiments with MonoSDF indicate that the network prob-
ably memorizes the set of per training image shift and scale – ex-
plicitly passing an unique scalar tied to the training image (e.g.
image index as proposed in [Martin-Brualla et al. 2021]) speeds up
convergence significantly. Success of MonoSDF in recovering both
shape and appearance almost exclusively depends on the quality of
the monocular depth and normal predictions. Our experiments on
using MonoSDF on the WildLight dataset([Cheng et al. 2023]) or
the ReNe dataset ([Toschi et al. 2023]) failed because the pre-trained
Omnidata models performed poorly on these datasets. Unfortu-
nately, as implemented, MonoSDF also failed to reconstruct scene
geometry when the angles between the views were small (ReNe
dataset views are maximally 45◦ apart) for the scenes we captured.
However, it demonstrates superior performance on the DTU and
the BlendedMVS sequences while training with as low as three
pre-selected views. Finally, our scenes were captured with a small
depth of field and most of the background was out of focus, so the
scene background depth was significantly more noisy than the fore-
ground depth. We sidestepped this problem by assigning a fixed 1m
depth to all the pixels that were in the background. Although this
depth mask simplifies our camera pose estimation problem (by seg-
regating the foreground from the background), it assigns multiple
infeasible depths to a single background point. As we aggregate the
depth maps into the intrinsic network (N ) by minimizing Eq. (1),
the network learns the mean (with some local smoothing) of the
multiple depths assigned to the single background point. However,
the scale and shift invariant loss is not robust in this sense and with
masked depth maps, we could not reliably optimize MonoSDF on
our sequences. We suspect that this is because the scale and shift
estimates for each instance of Eq. (6) on the background points
yielded very different results, de-stabilizing the optimization.
[Roessle et al. 2022] and [Deng et al. 2022] use sparse scene

depth in the form of SfM triangulated points. [Roessle et al. 2022]
use learnt spatial propagation [Cheng et al. 2019] to generate dense
depth maps from the sparse depth obtained by projecting the world
points triangulated by SfM. [Deng et al. 2022] assign the closest
surface depth at a pixel obtained by projecting the triangulated
points to the image plane. Neither of these pipelines recover a 3D

https://stereomfc.github.io
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representation of the scene and focus on view synthesis using few
views.

B TECHNICAL DETAILS OF OUR HARDWARE
To capture data from the scene we integrate a binocular stereo cam-
era pair with a ring of flash lights around them. For our prototype,
we use a pair of machine vision cameras ([FLIR 2024]) with a 1”,
4MP CMOS imaging sensor of resolution of 2048 × 2048 pixels. As
we focus mainly on small scenes, we use two sets of lenses that
yield a narrow field of view – 12mm and 16mm fixed focal length
lens ([EdmundOptics 2024]). We use 80W 5600K white LEDs ([CREE
2024]) as flashes driven by a DC power supply and switched though
MOSFETs controlled with a Arduino over USB. At each pose of our
rig, we captured 12 images with each of the flash lights on (one
light at a time) and one HDR image per camera. The cameras are
configured to return a 12 bit Bayer image which is then de-Bayered
to yield a 16 bit RGB image. We set the left and right cameras to
be triggered simultaneously by an external synchronization signal.
We configured the camera frame acquiring and the flash triggering
programs to run on the same thread and synchronized the frame
acquisition with the flashes through blocking function calls. Figure 5
presents a schematic of our prototype device.

Through experiments we observed that the vignetting at the edges
of the frames were detrimental to the quality of reconstruction, so
we only binned the central 1536 × 1536 pixels. Additionally, a 16bit
1536 × 1536 frame saved as a PNG image were often upward of
10MB, so, to achieve a faster capture time and a faster training time
using the captured images, without sacrificing the field of view, we
down sampled the images to a resolution of 768 × 768 pixels for
our experiments. Centered crops of our initial larger frames lead to
failures of our pose-estimation pipelines (Section 4.1), so we chose
to down sample the images instead. For the flashlit images, we use
the camera’s auto exposure function to calculate an admissible ex-
posure for the scene and use 80% of the calculated exposure time
for imaging – the built-in auto-exposure algorithm tended to over-
expose the images a bit. For the HDR images, we performed a sweep
of exposures from the sensor’s maximum (22580 microseconds) in 8
stops and used [Mertens et al. 2007] to fuse the exposures. Following
the recommendations of [Jensen et al. 2014] we used an f-stop of
2.8 to ensure the whole scene is in the depth of field of the sensors.
We found the recommendations from [Mildenhall et al. 2022] to be
incompatible with our pipeline, so we used Reinhard tone-mapping
([Reinhard et al. 2023]) to re-interpret the HDR images. Our image
localization pipeline, and stereo matching also work better with
tonemapped images.
To identify pixels along depth edges, we followed [Raskar

et al. 2004] to derive per-pixel likelihoods of depth edges. Assuming
that the flashes are point light sources and the scene is Lamber-
tian, we can model the observed image intensity for the 𝑘th light
illuminating a point x with reflectance 𝜌 (x) on the object as

I𝑘 (x) = 𝜇𝑘𝜌 (x)⟨l𝑘 (x), n(x)⟩ (7)

where 𝜇𝑘 is the intensity of the 𝑘th source and l𝑘 (x) is the normal-
ized light vector at the surface point. I𝑘 (x) is the image with the
ambient component removed. With this, we can calculate a ratio

image across all the illumination sources

R(x) = I𝑘 (x)
I𝑚𝑎𝑥 (x)

=
𝜇𝑘 ⟨l𝑘 (x), n(x)⟩

max𝑖 (𝜇𝑖 ⟨l𝑖 (x), n(x)⟩)
(8)

It is clear that the ratio image R(x) of a surface point is exclusively
a function of the local geometry and as the light source to camera
baselines are much smaller than the camera to scene distance, except
for a few detached shadows and inter-reflections, the ratio images
(Eq. (8)) is more sensitive to the variations in geometry than any
other parameters. We exploit this effect to look for pixels with
largest change in intensity along the direction of the epipolar line
between the camera and the light source on the image. This yields a
per-light confidence value of whether x is located on a depth edge
or not. Across all 12 illumination sources, we extract the maximum
values of the confidences as the depth edge maps. Unlike [Raskar
et al. 2004], we use 12 illumination sources 30◦ apart, and we do
not threshold the confidence values to extract a binary edge map.
This lets us extract more edges especially for our narrow depth
of field imaging system and gets rid of hyper parameters used for
thresholding and connecting the edges.
To identify pixels with non-Lambertian reflectances, we

modified the definition of differential images in the context of near-
field photometric stereo introduced by [Chandraker et al. 2012; Liu
et al. 2018]. Equation (7), assuming uniform Lambertian reflectances,
can be expanded as

I𝑘 (x) = 𝜇∗
𝑘
𝜌 (x)n(x)𝑇 s𝑘 − x

|s𝑘 − x|3
(9)

where s𝑘 is the location and 𝜇∗
𝑘
is the power of the 𝑘th light source.

We define the differential images as I𝑡 = 𝜕I
𝜕s s𝑡 where, s𝑡 =

𝜕s
𝜕𝑡 , which

when applied to Eq. (9) can be expanded as

I𝑡 (x) = I(x) n𝑇 s𝑡
n𝑇 (s − x)

− 3I(x) (s − x)𝑇 s𝑡
|s − x|2

(10)

Observing that the light sources move in a circle around the center
of projection on the imaging plane, s𝑇 s𝑡 = 0, and the second term
of Eq. (10) is exceedingly small given that the plane spanned by s𝑡 is
parallel to the imaging plane and our choice of lenses limit the field
of view of the cameras. The second term is further attenuated by
the denominator |s − x|2 because the camera-to-light baselines (s)
are at least an order of magnitude smaller than the camera to object
distance (x). Therefore, under isotropic reflectances (Lambertian
assumed for this analysis) the differential images I𝑡 (x) are invariant
to circular light motions – any variance can be attributed to the
violations of our isotropic BRDF assumptions. We identify specular
patches by measuring the variance of this quantity across the 12
instances of the flashlit images.
Although our pipelines for identifying depth edges and patches

of varying appearances demonstrate satisfactory qualitative perfor-
mance, sometimes they yield wrong labels because Eqs. (8) and (10)
do not include additional terms for spatially varying BRDFs and in-
terreflections respectively. These errors do not have any significant
effect in our reconstruction pipeline as we use this information to
generate samples during different phases of training to minimize
photometric losses and we do not directly infer shape or reflectances
from these steps.
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B.1 Difference between [Feris et al. 2005; Raskar et al.
2004] and our hardware

[Raskar et al. 2004] was the first to propose pairing flashes with
cameras and laid the groundwork for identifying depth edges from
multi-flash images from a single viewpoint. However, [Raskar et al.
2004] considered a monocular camera and only four flashes along
the horizontal and vertical directions of the camera in the demon-
strated device. Researchers (see e.g. [Chaudhury et al. 2024]) have
since extended it by placing multiple light sources far apart from
a monocular camera and have demonstrated locating depth edges
on objects with strictly Lambertian reflectances. In this work, we
retain the original light and camera configuration from [Raskar et al.
2004] and increase the number of lights from four to 12.
[Feris et al. 2005] also investigate a stereo camera in a multi-

flash configuration aiming at edge preserving stereo depth maps,
and do not extend the application to synthesizing views by capturing
and assimilating multiple views of the scene. For obtaining stereo
depth maps, we use [Xu et al. 2022], which performs much better
than conventional stereo matching ([Hirschmuller 2005; Zabih and
Woodfill 1994]) largely deployed in off-the shelf systems ([Keselman
et al. 2017]).
Both [Feris et al. 2004; Raskar et al. 2004] discuss methods

to detect specularities (termed “material edges”) through different
transforms of the multi-light images. However, we achieve a more
continuous circular motion of the lights around the cameras, so we
choose to use the photometric invariants described by [Chandraker
et al. 2012] instead.

C REPRESENTATIONS AND IMPLEMENTATION
DETAILS

To ensure interoperability and modularity of our pipelines between
the proposed architectures – VolSDF†, NeUS†, AdaShell†, andUniSurf†,
we used a common intrinsic network N and appearance network
A. The intrinsic networkN models the scene geometry and surface
properties through its embedding channels. Across all the experi-
ments, we used N with two fully connected layers of 128 neurons.
Following NeuralAngelo [Li et al. 2023], we used 16-18 levels of hash
encodings activated periodically. The gradients of the parameters
of N were numerically calculated numerically (not with automatic
differentiation) as recommended by [Li et al. 2023]. The appearance
networkA for learning scene radiance is inspired by MonoSDF([Yu
et al. 2022b]) and comprises of two fully connected layers of 128
neurons and 4-6 orders of frequency encoding for the viewing di-
rections. In addition to A, NeUS† also has a small 4 layer MLP (32
neurons per layer) to learn the radiance of the background as rec-
ommended in the original work by [Wang et al. 2021].
We ran our experiments on a Linux workstation with an Intel

Corei9 processor, 64GB RAM, and an Nvidia RTX3090Ti graphics
card with 25GB of vRAM. Across all the experiments for learning
scene radiance, we implemented a hard cut-off of 100K gradient
steps amounting to less than 4.5 hours of training time across all
the experiments.

Unisurf† is our method inspired by Unisurf[Oechsle et al. 2021].
We represent the scene’s geometry using a pre-optimized implicit

network N as outlined in Section 3.1. We follow the recommen-
dations of [Oechsle et al. 2021] to optimize A. Unisurf exposes a
hyperparameter to bias sampling of Eq. (2) towards the current
estimate of the surface. As we pre-optimize the surface, we can find
the surface point x𝑠 = o + 𝑡𝑠d through sphere tracing S along a
ray. The intersection point 𝑡𝑠 can then be used to generate samples
along the ray to optimize Eq. (3).

𝑡𝑖 = U
[
𝑡𝑠 +

(
2𝑖 − 2
𝑁

− 1
)
Δ, 𝑡𝑠 +

(
2𝑖
𝑁

− 1
)
Δ

]
(11)

Equation (11) is the distribution used to draw samples and Δ is the
hyperparameter that biases the samples to be cose to the current
surface estimate. As we can optimize S independent of Eq. (2) by
just minimizing Eq. (1) with registered depth maps (see Section 3.1),
we use this method to study the effects of volumetric rendering
versus surface rendering. We found this strategy to be very sensi-
tive to the hyperparameter Δ and its decay schedule as the training
progressed. While best parameters for some sequences resulted in
very quick convergence, poorer choices led to undesirable artifacts
(see e.g. Fig. 3).

AdaShell† is our method inspired by AdaptiveShells[Wang et al.
2023] and [Müller et al. 2022; Sun et al. 2022]. We start with a pre-
optimized S by minimizing Eq. (1) in Section 3.1. We then immerse
the surface represented by S in an isotropic voxel grid and pregres-
sively cull the voxels at a adaptive distance from the zero-level set
of S. This leaves us with a “shell” of voxels around (both inside
and outside) the surface (zero-level set of S) of the object which
serves a similar purpose to the “shell” around the learned surface
in [Wang et al. 2023]. Following [Sun et al. 2022] we then generate
samples along a pixel guided by the voxels it intersects, the spatial
density of samples is inversely proportional to their distance from
the estimated surface. We implement this using the tools from Nerf-
Studio[Li et al. 2022; Tancik et al. 2023], A is derived from A is
directly adopted from [Yu et al. 2022b]. Figure 9(a,d) denote the re-
sult of minimizing Eq. (1) and is the starting point of our AdaShell†
pipeline. Figure 9(b,e) denote the sampling volume as a wire frame
around the estimated geometry and Fig. 9(c,f) are zoomed in views
of sections of the scene.
The “shells” recovered in Fig. 9 and by [Wang et al. 2023] are

physically similar quantities – [Wang et al. 2023] dilate and erode
the original level-set of the scene (approximated by S in both our
work and Adaptive Shells) through a hyperparameter. [Wang et al.
2023] estimate the fall-off of the volume density values along a ray to
determine the hyperparameters, which in turn determines the width
of the “shell”, and subsequently use uniform sampling (similar to
Eq. (11), where the Δ now denotes the local thickness of the shell) to
generate samples for rendering. Our work takes a discrete approach
by immersing the zero-level set (in form of pre-optimized S) in a
dense isotropic voxel grid and culling the voxels which have a lower
volume density, according to a preset hyperparameter that deter-
mines the thickness of the shell. Once the shell has been estimated,
we use a density weighted sampling (instead of a uniform sampler)
to generate samples along the ray inside the shell. We expect our
sampling strategy to be more robust to errors in estimated geometry
(as shown in Section 4.2.4) than [Wang et al. 2023], however, at
the time of writing, an implementation of AdaptiveShells was not
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available to validate this claim.
VolSDF† is our method similar to VolSDF [Yariv et al. 2021] and

MonoSDF[Yu et al. 2022b]. We represent the scene with N and A
and train it with metric depth and color by jointly minimizing ℓ𝐶
and ℓ𝐷 . The samples for Eq. (3) are drawn using the “error-bounded
sampler” introduced by [Yariv et al. 2021]. A is directly adopted
from MonoSDF/ VolSDF.
Finally, NeUS† represents a modified version of NeUS [Wang

et al. 2021], where we use the training schedule and structure of N
from [Li et al. 2023], the appearance network A is adopted from
NeUS and we optimize Eq. (1) along with Eq. (3).

D CAPTURING APPROXIMATE BRDF AND BAKING
TEXTURE

Multi-illumination images captured by our camera can be used to
estimate surface reflectance properties.We largely follow the appear-
ance parametrization described by [Zhang et al. 2022] and recover
a truncated Disney BRDF model([Burley 2012]. Our model consists
of a per pixel specular albedo, a diffuse RGB albedo, and roughness
value to interpret the observed appearance under varying illumina-
tion. To estimate the spatially varying reflectance, we first train a
volumetric model (VolSDF† or NeUS†) to convergence to learn the
appearance as radiance. At convergence, the first channel S of the
intrinsic networkN encodes the geometry, the appearance network
A encodes the radiance. We use two of the remaining channels of
the intrinsic network to predict the roughness and specular albedo
at every point on the scene, the diffuse albedo is obtained as the
output of the converged network. To calculate the appearance, we
apply the shading model ([Burley 2012]) to calculate the color at
every sample along a ray and volumetrically composite them using
Eq. (2) to infer radiance as reflectance. Figure 6 describes our steps
graphically. Optimizing for the full set of the Disney BRDF parame-
ters, following [Cheng et al. 2023] did not work with our pipeline
as the optimization landscape was filled with with several local
minima. Figure 11b shows one instance of optimizing the pipeline of
[Cheng et al. 2023], where the strengths of the recovered ‘clearcoat’
and ‘clearcoat-gloss’ parameters dominated over the optimization
of the other parameters, resulting in a waxy appearance, whereas
choosing a more conservative set of parameters (only ‘base-color’,
‘specular’ and ‘roughness’) in Fig. 11a led to a more realistic appear-
ance.

Our process of baking out texture and material properties roughly
follows the methods described by [Cheng et al. 2023] and [Tancik
et al. 2023]. We proceed through the following steps:

• At convergence (see Fig. 6), we extracted the scene geometry
using the method described in [Mescheder et al. 2019].

• We calculate a depth mask by thresholding the depth images
at every training view with an estimate of the scene depth
to segregate the foreground from the background.

• Next, we cull the resulting triangular mesh by projecting
rays from every unmasked (foreground) pixel corresponding
to all the camera views. This lets us extract the main subject
of our scene as a mesh. We use Embree[Woop et al. 2013] to
implement this.

• We then generate texture coordinates on the culled mesh
using [Young 2024] and rasterize the mesh to get points on
the surface corresponding to the texture coordinates.

• We then project each of these surface points back on to each
of the training views to get the image coordinates. Rays
originating from a rasterized surface point, intersecting the
surface before reaching the camera are removed.

• For all the valid projected points, we cast a ray onto the
scene and use either of VolSDF† or NeUS† to generate the
color at the pixel along the ray using Eq. (2). This is repeated
for all the training views.

• At the end of this step we are left with several measure-
ments of colors at every texture coordinate of the scene. We
apply a median filter to choose the color – taking averages
or maxima of the samples introduces artifacts. If baking
the radiance as texture is sufficient (often the case for dif-
fuse scenes) this textured mesh can be exported. Figure 12
demonstrates using each of VolSDF†, NeUS† and AdaShell†
to calculate the diffuse color of the scene in Fig. 1.

• To bake outmaterial textures, we follow the same procedures
with the corresponding material channels after VolSDF† or
NeUS† has been trained on multi illumination images using
the schedule outlined in Fig. 6.

• The material properties are also volumetrically composited
using Eq. (2) and median filtered like the base colors. This is
different from just querying the value of the network at the
surface point in [Cheng et al. 2023].

We use [Sketchfab 2024], a web browser based tool that supports
physically based rendering with the Disney BRDF parameters to
generate the representations in Figs. 1 and 11.
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